钙钛矿锰氧化物磁制冷材料及 多功能导电陶瓷材料 (金畔生物)
磁制冷是利用固体磁性材料的磁热效应来达到制冷的目的。磁卡效应(MagnetocaloricEffect,MCE)是指当分别对磁性材料等温磁化和绝热退磁时该材料相应地放热和吸热的一种现象。对于钙钛矿氧化物磁制冷材料,利用振动样品磁强计或超导量子干涉仪测量其等温磁化M_H曲线或等磁场下的M_T曲线,计算样品在Tc温度下的磁熵变(即较大磁熵变),以此判断该材料作为磁制冷工质的可行性[13]。如果A位被离子半径更小的离子或B位被离子半径更大的离子取代,那么取代的结果使容差因子减小,晶格收缩,铁磁耦合变小,从而使磁熵变减小。Szewczyk等[14]、陈伟等[15]以LaMnO3为基质材料用Ca、K、Sr、Ti为掺杂离子详尽研究了不同磁场下掺杂后LaMnO3的较大磁熵变,然而实验结果不甚理想。目前实验室合成磁制冷材料的居里温度或高于室温,或低于室温,均不适合作为室温磁制冷材料。
因此,改进稀土钙钛矿材料的合成工艺及优化掺杂等参数,将现有的稀土锰钙钛矿复合,研究NbFeB等永磁体产生的中低磁场在室温附近获得较大磁熵变,以期获得在室温附近中低磁场较大磁熵变的磁制冷材料。该系列材料在室温磁冰箱等方面有广阔的应用前景,有望推动制冷领域的技术革命。
多功能导电陶瓷材料
以钙钛矿氧化物制备的导电陶瓷具有化学性能稳定、抗腐蚀、耐高温等特点,具有优良的导电性和高温PTC效应(positivetemperaturecoefficient),即在某些陶瓷材料中加入微量的稀土元素,其室温电阻率会大幅度下降而成为半导体陶瓷,当温度上升到它的居里温度Tc时其电阻率急剧上升,BaPbO3是一种新型的多功能导电陶瓷,优异的导电性可做成薄膜和复合材料;其高温PTC效应可做成各种大功率、高温发热体和电流控制元件及高温传感器等,用作Cr2O3基的陶瓷湿度传感器电极具有优良的综合性能。Chang[16]从动力学角度研究了BaPbO3的反应机理,试图降低温度来制备BaPbO3化合物,但效果不理想。Yamanaka[17]次使用共沉淀法制得了该化合物同时降低了合成温度,获得了分布均匀的粉末。Wang[18]利用该法在700℃下制得了BaPbO3化合物薄膜。BaPbO3是电子导电的多功能导电陶瓷,Kundaliya等[19]利用穆斯鲍尔谱中子衍射研究多晶态钙钛矿化合物的磁电阻现象,结果表明,与未掺杂Fe样品相比,La0.67Ca0.33Mn0.9Fe0.1O3具有巨磁电阻效应,在40kOe的应用磁场和50~80K下该化合物的巨磁率为98%。Xu等[13]实验合成了La0.67Ca0.33MnO3、La0.67Sr0.33MnO3、La0.67Ba0.33MnO3锰类钙钛矿的巨磁材料,从磁化数据获知在居里温度附近产生巨大的熵变,而且这些样品特殊焓变均发生在它们的相变温度附近。Hu等[20]对(La1-xCax)[(Fe0.5Nb0.5)1-yZry]O3(x=0.4,0.6;y=0.05,0.1)在微波频率下进行了微波介电性研究,Zr4+被Fe3+或Nb5+在B位取代后,对介电常数ε影响不大,但共振频率的温度系数tf近似为零(x=0.55,y=0.1),实验条件下获得介电常数ε为85.3。
目前存在主要问题是化合物合成重复性差、铅易氧化挥发,难保持材料的化学计量平衡等因素,因此,必须研究新制备工艺、优化离子掺杂和烧结温度等条件,从而合成性能稳定、导电性好的功能陶瓷材料
氧分离膜与气敏材料
钙钛矿型复合氧化物因其电子和氧离子导电性对氧有良好的吸附和脱附性能。高温下,当膜两侧存在氧浓度梯度时,无需外接电路就可以选择氧。固体电解质作为透氧膜材料时,使用具有催化活性的电极(如Pt或混合导电体)以促使氧的吸附和脱附,该反应只有在气相—电极—电解质三相界面上才能进行,而对于La1-xSrxFe1-yCoyO3材料,反应能在整个界面上进行。高温下这类材料是电子或电子空穴和氧离子的混合导体,低价金属离子Sr2+的掺杂导致空穴和氧空位的出现,其协同作用可实现对氧气的选择透过性,且随着Sr和Co含量的增加而增加。由于是通过氧空穴机理来传导氧,制备的膜对O2有100%的选择性,可以用于氧气的分离、纯化和各种涉氧反应。因此,具有混合导电性的钙钛矿型复合氧化物La1-xSrxFe1-yCoyO3可望成为一种全新的氧分离膜介质材料[21]。葛秀涛等[22]采用溶胶凝胶法在800℃下热处理2h制得钙钛矿氧化物YFeO3微粉,呈p型导电行为,用在350℃下焙烧2h和800℃焙烧3h所得超细微粉制作的元件对C2H5OH有较高的灵敏度和良好的选择性,257℃下对4.5×10-5mol.dm3C2H5OH的灵敏度是相同浓度干扰气体汽油的7倍以上,它有望成为一类新型酒敏传感器。钛酸锶(SrTiO3)是钙钛矿氧化物绝缘体,被广泛用于生长高温超导薄膜的衬底,作为高电容率材料在超晶格和下一代超大规模集成器件中具有潜在的应用价值。崔大复等[23]研究了掺杂Sb的SrTiO3透明导电薄膜,用紫外脉冲激光淀积法在SrTiO3衬底上制备了钙钛矿型氧化物SrTi1-xSbxO3(x=0.05,0.10,0.15,0.20)薄膜,结果表明,可见光波段薄膜的透过率大于90%,当Sb掺杂x=0.05时,薄膜具有良好的导电性。侯峰等[24]进行了LaNiO3纳米陶瓷薄膜的制备,并制成了氧敏传感器,实验测试了LaNiO3的响应速率,发现掺杂Ce后从还原气氛到氧化气氛和从氧化气氛到还原气氛的响应时间缩短为2s。Toan等[25]用反铁磁钙钛矿氧化物LaFeO3膜在270℃和420℃温度和不同CO、CH4和NO2浓度下进行了气敏性研究,用两种感应膜测试了不同的混合物CO和CH4,用Au和Pt作电极测量了纳米膜LaFeO3的响应时间,实验证实对CO和CH4可测到的10×10-6数量级,而对NO和NO2可达1×10-6以下的精确度,有望成为煤矿上可燃气体的气敏传感器。膜La0.7Sr0.3Ga0.6Fe0.4O3-δ的透氧率远低于商业气体分离膜,但涂上La0.6Sr0.4CoO3-δ后,透氧量明显增加,是不涂样品的2~6倍,涂层的多孔性对透氧量影响很大[26]。
钙钛矿氧化物透氧膜材料的选择应满足下述条件:(1)透氧量是决定透氧膜具有应用价值与否的关键,透氧量大于1.0mL.cm2才有应用价值;(2)透氧膜材料应具有较强的抗气体侵蚀能力,实际环境中保持结构和化学稳定性;(3)透氧膜应具有高的机械强度。目前存在的问题是,实际应用中透氧量降低和膜组件破裂致使反应器报废损坏。今后的研究应集中在开发合成新气敏材料以提高气敏性、选择性和传感器的稳定性,设计先进的合成工艺以降低其成本,同时确保其可靠性、安全性和再现性。
钙钛矿复合氧化物材料应用前景
钙钛矿结构中A或B位被其它金属离子取代或部分取代后可合成独特结构和性能的复合氧化物,从而形成阴离子缺陷或不同价态的B位离子,这种特殊结构的功能材料已发现具有上述气敏、巨磁电阻、电导性和催化活性等特性,涉及到电子、机械、化工、航天、通讯和家电等众多领域。比如,利用其独特的酒敏特性和较强的氧敏特性,可用作酒敏传感器和氧传感器等的电极材料,制成的气敏元件灵敏度高、抗干扰性强、响应速度快,具有相当好的电阻值稳定性以及与之相关的测量准确性;作为氧传感器的电极材料,可用于监控汽车尾气的排放和检测冶炼中的氧含量。优化两类钙钛矿材料的结合系数和应变条件,可制成舰艇用性能优良的声纳传感器;在催化领域,实验室规模的烟道气SO2还原催化剂已有报道[36],作为光降解催化剂和汽车尾气催化剂正在大力研究开发。
纳米材料、信息技术和生物技术是21世纪社会经济发展的三个支柱,钙钛矿型复合氧化物作为纳米研究领域中一类重要功能材料具有广阔的应用前景,进一步研究其合成、结构和特殊用途对化工、机械等工业乃至国防具有实际意义。
上述内容部分来源于网络,如有侵权,请联系删除!
金畔生物供应多种钙钛矿基础产品和各项复杂定制产品,均可接单,仅用于科研
wyf 02.25