稳定同位素示踪技术在氨基酸代谢调控中的应用

稳定同位素示踪技术在氨基酸代谢调控中的应用

氨基酸在合成代谢和分解代谢中起着关键作用,它们不仅是蛋白质的组成部分,而且是许多关键代谢产物的前体,并被氧化以提供能量。氨基酸在体内的代谢包括4个方面(图2):

转化为非蛋白的含氮化合物,如嘌呤、嘧啶、胆碱等;

通过脱氨基作用转化为NH3α-酮酸,α-酮酸终转变成糖类、酮体或经过TCA氧化成二氧化碳和水,并放出能量;

通过脱羧作用依次转化为胺、醛、酸,终生成二氧化碳和水;

过剩氨基酸将通过排泄方式排出体外。在氨基酸代谢调控研究中,稳定同位素示踪技术多用于研究氨基酸的合成与转化,通过对特定氨基酸进行同位素标记,根据标记原子追踪该氨基酸的代谢路径,精确了解氨基酸的代谢情况,进而研究其在机体内的重要功能。


稳定同位素示踪技术在氨基酸代谢调控中的应用

研究了冬虫夏草中茶氨酸的积累多于其他植物的机制,比较了冬虫夏草与其他植物(如金花茶、山茶花、玉米、拟南芥和番茄)中茶氨酸的含量,并用稳定同位素示踪技术阐明其生物合成途径。通过质谱法对相关中间体和代谢物进行定量分析发现,补给2N5-乙胺后,所有植物均产生2N5-茶氨酸,这就暗示乙胺的可用性将是茶氨酸在冬虫夏草和其他植物中积累差异的原因。


前期发现啮齿目动物膳食必需氨基酸(NEAAs)作为氮源的重要性,且每个必需氨基酸均具有不同的促生长活力。他们对必需氨基酸进行同位素标记(15N,比较膳食中必需氨基酸氮素代谢的差异,借助氨基酸分析仪和串联质谱分别测定肠道及血浆中氨基酸的浓度和相应的15N丰度。终揭示了大鼠肠道中必需氨基酸氮代谢的异同,暗示膳食中必需氨基酸的氮素主要通过肠内代谢大量进入氨基酸氮循环。


通过描述载脂蛋白M与脂代谢其他成分间的相互作用来更好地明确其在动脉粥样硬化中的潜在优势。给14名男性受试者持续注入14 h 2H3-亮氨酸,每小时取1次血样并用液相色谱串联质谱进行分析,脂蛋白中的部分分解速率和产率采用房室模型进行计算。结果表明,低密度脂蛋白动力学在载脂蛋白M周转过程中发挥关键作用,血浆三酰甘油对载脂蛋白M1-磷酸鞘氨醇在脂蛋白间的分布均起作用,进一步证实了载脂蛋白M分泌后可被结合到高密度脂蛋白中,然后与非脂蛋白相关的室进行快速交换,也可被结合到低密度脂蛋白被慢慢分解代谢。


此外,CO2呼气法是同位素标记氨基酸用于临床诊断的一种新方法。其原理是给患者口服或静脉注射一定量某种13C标记的氨基酸,根据其身体某部位上发生特定的氧化代谢,产生含13CCO2,经肺呼出后用NaOH吸收,将生成的Na213CO3用酸处理获得13CO2气体,经纯化后,利用13C-呼气试验专用质谱仪来检测13CO2的浓度变化,绘出13CO2排出特征曲线。某种疾病的患者对某种氨基酸的氧化能力与正常人不同,因此,所获得曲线也存在明显的差异,从而可以进行临床诊断。Kirschmhai[46]用实验的方法控制两栖类动物的生理应激,通过呼吸测量法和13C呼气试验检测发展和蜕变过程中能量和营养物质的消耗。研究结果为幼虫生长和发育之间生理平衡的近因提供了证据,并为整个生命阶段能量和营养的消耗提供了新的认识。


稳定同位素标记氨基酸的检测方法快速准确、灵敏度高,现已应用于科学研究的各个领域。采用稳定同位素标记的氨基酸作为示踪剂,可准确把握氨基酸的合成与代谢途径,对揭示其在生物体内的转化规律起到了关键性作用;同时还可追踪蛋白质合成与代谢过程,利用患病状况下蛋白质合成的异常来诊断疾病。

来源:本文来源网络,版权归相关权利人所有,如侵权,请联系删除