TADF分子DtBuCz,BNCz,p-Cz-BNCz,m-Cz-BNCz基于BN共振结构已经设计合成了一些蓝光及蓝绿光窄谱带电致发光材料的定制合成


目前,绝大多数高效率有机电致发光材料为金属磷光配合物或热活化延迟荧光(TADF: thermally activated delayed fluorescence)有机化合物,这两类材料普遍具有的特点就是发射光谱较宽,其主要原因在于金属磷光配合物或有机TADF分子具有电荷转移激发态特性,而且其电荷转移激发态的能量分布区域普遍较宽,从而导致发射谱带很宽,这对于实现高色纯度显示非常不利。最近国际上报道了一些基于前线轨道共振 (MR: Multiple Resonhaice) 结构的硼氮(BN)发光化合物,其具有窄谱带发光特性。目前,人们基于BN共振结构已经设计合成了一些蓝光及蓝绿光窄谱带电致发光材料,其中蓝光材料显示了非常优异的色纯度和效率

TADF分子DtBuCz,BNCz,p-Cz-BNCz,m-Cz-BNCz基于BN共振结构已经设计合成了一些蓝光及蓝绿光窄谱带电致发光材料的定制合成

科研人员基于前线分子轨道工程(FMOE:Frontier Molecular Orbital Engineering)构建电荷转移激发态的材料设计合成策略,并成功地获得了具有高效率高色纯度的绿色电致发光材料。

FMOE分子设计策略的核心思想在于:根据HOMO/LUMO轨道的分布位点,通过精准定位连接方式在BN共振结构核心外围引入辅助电子给体或者电子受体基团,辅助电子给体与布局HOMO轨道的原子连接,辅助电子受体与布局LUMO轨道的原子连接。基于该思路,当引入辅助电子给体基团时会导致目标分子的HOMO轨道由BN共振母体核的HOMO与辅助给体基团的HOMO合并而成,而目标分子的LUMO仍然保持与BN共振母体核的LUMO相同,这可以有效提升目标分子的HOMO能级。与BN共振母体分子相比,目标分子的发射光谱会显著红移,同时发射光谱仍然保持窄谱带特性。当引入辅助电子受体基团时会导致目标分子的LUMO轨道由BN共振母体核的LUMO与辅助给体基团的LUMO合并而成,而目标分子的HOMO仍然保持与BN共振母体核的HOMO相同,这可以有效降低目标分子的LUMO能级,同样也可以实现发射光谱红移且保持窄谱带发射的特性。

基于FMOE分子设计策略合成的m-Cz-BNCz分子在绿光区显示了窄谱带发射特性,利用其作为电致发光材料制备的电致发光器件外量子效率(EQE)达到27%,电致发光光谱显示了很窄的半峰宽 (FWHM: 44 nm),色坐标CIE (0.23, 0.69)处于理想的绿光区。FMOE分子设计理念的重要意义在于:可以将常见D-A型发光分子(即电子给体基团和电子受体基团通过化单键或者一个过渡基团连接在一起形成的给-受体型发光分子)容易调节发射波长的优点及BN共振结构窄谱带发射的优点完美结合在一起,同时有效规避了常见D-A型发光分子宽谱带发射的缺点及BN共振结构不容易实现长波长发射的缺点。FMOE分子设计策略为设计合成具有高色纯度和高效率的有机电致发光材料提供了新途径。

论文信息:

Angewhaidte Chemie International Edition

DOI: 10.1002/haiie.202007210

上海金畔生物科技有限公司提供金属配合物,热激活延迟荧光(TADF)材料,聚集诱导延迟荧光(AIDF)材料,聚集诱导发光AIE材料的定制合成
TADF分子DtBuCz,BNCz,p-Cz-BNCz,m-Cz-BNCz基于BN共振结构已经设计合成了一些蓝光及蓝绿光窄谱带电致发光材料的定制合成

基于苯基磷氧基团双极主体材料

基于二苯基磷氧和咔唑单元的蓝光主体材料BCz-BPO 

含有二苯基磷氧基团的双极传输型热激活延迟荧光主体材料POCz-CzCN

TADF树枝状分子POCz-CzCN

基于吡啶的双极主体材料DTPAPPy

DCzPPy

基于螺双芴和DPPO的磷光主体材料

(4-(9,9'-双螺芴基-2-)苯基)双苯基氧化膦(SPDPPO)

(9,9'-双螺芴基-2,7-双(4,1-苯基)双(二苯基氧化膦)(SBPBDPPO)

9-苯基-3-(4-(苯磺酰基)苯基)-9H-咔唑(PPSPCz)

2-(4-(苯磺酰基)苯基)-9,9’-螺双芴(PSPSF)

9,9-二苯基-2-(4-(苯磺酰基)苯基)-9H-芴(DPPSPF)

3’-(9H-咔唑-9-基)-[1,1’-联苯-4-二苯基氧化膦])(Cz Ph PO)

(4(9-苯基-9H-咔唑-2-基)苯基)氧化膦(2Ph Cz PO)

(4(9-苯基-9H-咔唑-3-基)苯基)氧化膦(3Ph Cz PO)